
Linear Spatial Filtering Implemented in RTL for Binary Convolutional Neural Network

Abstract

For the past couple of decades, applications for convolutional neural networks (CNN) have

increased in popularity due to increased performance of computing and research in deep

learning. CNNs are nowadays considered a foundational type of layer in deep learning

architecture for image processing, image generation, object detection, and even speech detection

& synthesis. However, computation time is still a big issue when training a network that uses

CNNs, where some training can take hours or even days. Binary CNNs have replaced the

weights of a CNN from a decimal point value to a unit vector in both positive and negative

directions, which surprisingly does not take a lot of information away from the network and

severely decreases training time and evaluation. To further speed up CNNs, the concept of

Binary CNNs be extended from the software to a register transfer language (RTL) to be

synthesized into hardware. The example being synthesized has the smallest square kernel size of

three, commonly used in linear spatial filtering, with operators such as Sobel, Roberts, Prewitt,

etc. The inputs to the network, rather than being images are simply small binary arrays. This

report serves as a rudimentary example of how machine learning hardware comes to fruition.

1/(delay.area) (TA)

Name: Arpad Attila Voros

Unity ID: aavoros

Student ID: 200215778

Delay: 1725 ns

Clock period: 3 ns

cycles: 575

Logic Area:

(um2)

2398.522

Memory: N/A

1/(delay.area) (ns-1um-2)

2.41695e-7

Delay (TA provided example. TA to

complete)

Linear Spatial Filtering Implemented in RTL for Binary Convolutional Neural Network

Arpad Attila Voros

Abstract

For the past couple of decades, applications for convolutional neural networks (CNN) have

increased in popularity due to increased performance of computing and research in deep

learning. CNNs are nowadays considered a foundational type of layer in deep learning

architecture for image processing, image generation, object detection, and even speech detection

& synthesis. However, computation time is still a big issue when training a network that uses

CNNs, where some training can take hours or even days. Binary CNNs have replaced the

weights of a CNN from a decimal point value to a unit vector in both positive and negative

directions, which surprisingly does not take a lot of information away from the network and

severely decreases training time and evaluation. To further speed up CNNs, the concept of

Binary CNNs be extended from the software to a register transfer language (RTL) to be

synthesized into hardware. The example being synthesized has the smallest square kernel size of

three, commonly used in linear spatial filtering, with operators such as Sobel, Roberts, Prewitt,

etc. The inputs to the network, rather than being images are simply small binary arrays. This

report serves as a rudimentary example of how machine learning hardware comes to fruition.

1. Introduction

Ideally, if the synthesized result of this module were to be produced, it could potentially serve an

actual purpose other than for demonstration purposes. Even if the input sizes are limited to word

sizes, the module can run in parallel for segments of a binary image to improve processing time.

However, there are still severe limitations to this design and was mainly realised and designed

for educational purposes.

The design in this report was able to achieve a synthesized area of ~2400um2 with a minimum

clock period of 3 ns. Verilog was used as the RTL and Synopsys was used to synthesize the

module.

2. Micro-Architecture

The size limitations of the inputs are 16 bits in each dimension, while the size limitations of the

kernel is rigidly restricted to a 3 bit by 3 bit array. Because of this, the non-flexible kernel size

can be exploited when designing the hardware. It was decided that the entirety of the kernel can

be represented in the hardware, and the input data can be pipelined through to represent the

kernel “sweeping” across the image.

To do this, 9 ‘convolution modules’ are produced which simply load in the weights, pipeline the

incoming data to the outgoing data, all the while calculating the “product” of the bits. Since we

represent a -1 with a binary 0, and a 1 with a binary 1, we can XNOR the two bits to find its

binary equivalent “product”. However, in this design XORs are used to calculate the inverse,

which will be explained in a second.

To compute the convolution, the result of the element-wise matrix multiplication must be

summed together. If all the weights and inputs are binary, the highest possible result would be a

sum of all positive bits (9) and the lowest possible result would be a sum of all negative bits (-9).

There will never be a sum of 0, since the kernel size is odd. The result simply has to be signed to

store the output into a single bit. Because of this, we can simply calculate whether the there are

greater number of 0’s or 1’s in the 9 output bits. XORs were used instead of XNORs because

calculating the number of 0’s or 1’s is commutatively equivalent. As far as I am aware, XNOR

gates on a transistor level are simply XORs with a negation at the end, so adding 9 inverters

would be superfluous when only the signed output is needed.

The design of the hardware can be seen in the drawing in Figure 1 below. It was also realised

that an efficient way to sum the outputs would be to use 5 full-adders. Each of the 9 output bits

can first be fed into the three inputs (two sum bits and one carry-in bit) of three full-adders. The

respective outputs would be the output bit and a carry-out bit, which realistically represents the

values 1 and 2 when the output wires are high. Those 6 outputs are then pipelined into another

set of two full-adders, where the “1” bits go to one and the “2” bits go to another. The former

will have the same outputs as the adders from the previous stage, but the latter will represent the

values of 2 and 4 when the output wires are high. Using these four wires of {1, 2, 2, 4}, if all the

wires are high then we get a sum of 9 (as expected), and if all of them are low then we get -9. To

determine the sign of the output, we simply have to use some combinational logic to see if the

sum is 4 or more. In Verilog, this would be written as:

assign SIGN = (four & (one | two1 | two2)) | (one & two1 & two2);

Where four represents the four wire, two1 and two2 represent the 2 two wires, and one

represents the one wire. This simply means that if the four wire is high, we need at least one

other wire to be high to get a sum greater than 4 (since 4 + anything > 4). Otherwise, if all of the

one and two wires are high, we get a sum greater than 4 (since 1 + 2 + 2 > 4). This is represented

in drawing using a 2 bit MUX selector on the right of Figure 1. Since the original outputs

calculated the negative flag, the summed result is negated before stored to the output SRAM.

All of the convolution modules control the pipelining of the data by a convolutional “go” flag,

which, when high, acts as the kernel sweeps the data. Since the kernel size is limited to 3 bits by

3 bits, the first 3 lines of input can be pre-loaded before performing convolution. The first index

of each input is loaded into a 3 bit register to the input of the convolution module array, ready to

be pipelined down. As the convolution “go” flag goes high, the data enters the convolution

modules, and the next index of data is read in. Since the kernel size is restricted to 3, it is simply

timed to know when to start calculating the sum (when the first index of each row of data has

been pipelined down to the end of the convolution modules). It is only then when the pipelined

output is read and considered for storage.

To store the output, we can simply take the convolution module which holds the starting index in

both dimensions and get the data index at that module for all convolutions. In this case, that

module would be the upper-right module seen in Figure 1. To get the index of the data, it would

make the most sense to simply pipeline the data index alongside the data, so that’s what it does.

Figure 1: Hand drawn schematic of the module

When the index is received on the end of the output, it is checked to see if it is a proper storage

index that does not exceed boundary conditions. If so, the signed result is stored to an output data

register given the provided index.

A controller and datapath module are used in conjunction of the rest of the design. As the name

suggests, the controller controls the design via control flags while the datapath responds to the

control logic and manipulates data and other registers.

One of the jobs of the datapath register is when the input data is read in, it will determine the

boundary conditions for when the controller should move to the next column, move to the next

row, move to the next input, or completely stop. The datapath module is also what interfaces

with top (without memory), and as a result memory (top with memory) in order to read and write

data to/from simulated SRAMs.

The controller is a synchronous finite state machine (FSM) with 12 states. In short, the thought

process behind the function of the FSM is the following (this is not reflective of the exact

function and number of states used in the FSM, it is merely used to put the function of the FSM

into words):

1. Wait for top to tell you when to run

2. Start reading in weight and input dimensions

3. Start reading in weigh values and first row of input. Calculate boundary conditions given

input dimensions

4. Load in weights to convolution modules. Read in second row of input

5. Read in third row of input and start pipelining data through convolution modules

6. Once the first input data has reached the final stage of the convolution modules, calculate

the sum. Store in the output register given the output index

7. Continue pipelining data until a column-wise boundary condition is reached. This means,

last output has to be stored and new row has to be read in.

8. Store last output, write to SRAM output

9. Repeat steps 5-8 until row-wise boundary condition is reached

10. This means, we are ready for new inputs all together. Start reading from step 2

HOWEVER if instead of input dimensions are read in, the module reads in an EOF

condition (in this case, the EOF was represented by 0x00FF), then go back to step 1

because the module has run its course

3. Module Specifications

Register/Wire Name Width Description

dut_run 1 Run flag – set high externally to run

dut_busy 1 Busy flag – is set high when module is running

reset_b 1 Reset flag

clk 1 Clock

dut_sram_write_address 12 Write address for outgoing data

dut_sram_write_data 16 Outgoing data to be written

dut_sram_write_enable 1 Write enable flag for storing output

dut_sram_read_address 12 Outgoing input read address

sram_dut_read_data 16 Incoming input data

dut_wmem_read_address 12 Outgoing weight read address

wmem_dut_read_data 16 Incoming weight data

weights_data 16 Holds weights information. Used to load convolution modules

d_in 3 Three data inputs. Input to convolution modules, pipelined down

coli_in 4 Storage index of output, pipelined

s1_ones 3 Full-adder stage 1 “ones” output

s1_twos 3 Full-adder stage 1 “twos” output

s2_ones 3 Full-adder stage 2 “ones” input

s2_twos 3 Full-adder stage 2 “twos” input

initialization_flag 1 High when new input is read in. Used to indicate when to store result

last_col_next 1 Flag to indicate next clock cycle is the last column. Prepare next row

last_row_flag 1 Flag to indicate last row. Prepare for next input

dut_busy_toggle 1 Set high to toggle dut_busy

set_initialization_flag 1 Set high to set initialization_flag

rst_initialization_flag 1 Set high to reset initialization_flag

incr_col_enable 1 Set high to increment column index counter

incr_row_enable 1 Set high to increment row index counter

rst_col_counter 1 Set high to reset column index counter

rst_row_counter 1 Set high to reset row index counter

incr_raddr_enable 1 Set high to increment input read address

rst_dut_sram_write_address 1 Set high to reset input write address

rst_dut_sram_read_address 1 Set high to reset input read address

rst_dut_wmem_read_address 1 Set high to set weight read address to weight data (0x0001)

str_weights_dims 1 Set high to store wmem_dut_read_data (weight dimensions)

str_weights_data 1 Set high to store wmem_dut_read_data (weight data)

str_input_nrows 1 Set high to store sram_dut_read_data (dim 1, number of rows)

str_input_ncols 1 Set high to store sram_dut_read_data (dim 2, number of cols)

pln_input_row_enable 1 Set high to read in new input row, and pipeline inputs ‘upward’

str_temp_to_write 1 Set high to write output register into dut_wmem_write_data

update_d_in 1 Set high to pipeline new data into convolution modules

load_weights_to_modules 1 Set high to load weights into convolution modules

toggle_conv_go_flag 1 Set high to toggle convolution module “go” flag

rst_output_row_temp 1 Set high to reset output register

negative_flag 1 Negative flag. 1 if sum is negative, 0 if positive

conv_go_flag 1 Set high to pipeline data through convolution modules

end_condition_met 1 High if end condition (EOF) is reached

The green cells in the table above represent the interface of the top module. The rest are

descriptions of the registers and wires used in the top module of the system to get an idea of how

the system functions. The following figures are timing diagrams from the Verilog simulation to

demonstrate functionality.

Figure 2: Red shows the input addresses being pipelined during a ROW transition. Blue shows

the output register result as well as the str_temp_to_write flag

Figure 3: Red shows next and current state as well as rst_output_row_temp changing during an

INPUT transition. Blue shows the input SRAM reading the new input dimensions one after

another then the input data, starting convolution immediately

Figure 4: Red shows next and current state as well as rst_output_row_temp changing during a

FILE transition. Blue shows the input SRAM address being reset and starting to read again when

new inputs are read in

4. Verification

Using the testbench provided and the verified examples, the simulation was able to be verified.

Other input, weight, and expected output files were tested to ensure compatibility with any

number and combination of rows and columns (greater than or equal to kernel dimensions, less

than or equal to word size) worked as well. This means the design works past the expected

10x10, 12x12, and 16x16 requirements for any input rectangle of any size less than or equal to

16 or greater than or equal to 3. This minor amount of flexibility causes the design to be slower

than if the result was hard-coded for the required square sizes, where everything is done in

parallel instead of reading and pipelining data.

In addition, running multiple trials consecutively helped verify how to properly reset the DUT.

5. Results Achieved

Statistics:

- Number of compute cycles achieved:

o 575

o See Figure 5

- Minimum clock period achieved:

o 3 ns

o See Figure 7

- Minimum area achieved:

o 2398.522 um2

o See Figure 8

- Slack requirements met:

o See Figures 6, 9, and 10

Figure 5: Verification of simulation using provided testbench

Max path slack histogram – fast and slow

Min path slack histogram – fast and slow

Figure 6: Slack histograms

Figure 7: Clock period of 3ns achieved

Figure 8: ~2400um area achieved

Figure 9: Timing on max path on slowest condition. Slack met

Figure 10: Timing on min path on fastest condition. Slack met

6. Conclusions

In conclusion, in can be seen that hardware for machine learning is extremely viable and easy to

design. It can also be shown that creating a more flexible design with variable input support can

slow down the design, whereas creating a rigid/limited design can significantly speed things up,

which is the trade-off. The application will determine which type of design is preferred. As a

personal statement, I would say the idea behind the project is incredibly simple and so is writing

it in Verilog RTL. However, being completely unfamiliar with synthesis and Synopsys, it took a

significant amount of time to properly write the module after redesign after redesign (where each

design perfectly simulated in Verilog but had difficulty synthesizing). The items that helped the

most in proper synthesis were completely separating the controller and datapath, as well as using

one of the “CPU” notes as a reference to gauge how the datapath and controller module were

formatted. Once I based my design off of this format (though the logic and the idea behind the

design did not change), synthesis suddenly started working. It was definitely an interesting

experience.

